Pláčeš?.. I v slzách je síla....Tak jdi a bojuj!!!

Záhady....

2. března 2008 v 9:58 | Janča |  Nadpřírozeno a záhady
Přesně víme, co si asi teď myslíte: Velká tajemství? Ha ha ha. Já zrovna tak potřebuji vědět, co je v zemském jádru. Jenže jsou věci, které náš život činí zajímavějším. Hledání odpovědí mezi ně bezesporu patří.

Proč nejsme schopni předpovídat počasí?

Dokážeme předvídat počasí na týden dopředu, ale vytvořit počítačový model, který by nám řekl, jak bude za deset let? V roce 1961 meteorolog Edward Lorenz udělal počítačovou simulaci počasí a rozhodl se zaokrouhlit několik desetinných míst u jednoho z parametrů. Toto zaokrouhlení kompletně změnilo modely počasí. Dnes se tomu říká motýlí efekt: Když v Brazílii mávne motýl křídly, v Texasu z toho vznikne tornádo. Lorenzovo zjednodušení pomohlo nastartovat teorii chaosu a meteorologové jsou od té doby přímo posedlí tím, aby do svých modelů zadali co možná nejpřesnější data. Bohužel, dokonce ani ta největší přesnost nezaručí spolehlivost dlouhodobých předpovědí. Aby toho byli klimatologové schopni, museli by rozumět třeba tomu, jak na sebe vzájemně působí atmosféra s oceánem.

Je čas jen iluze?

Platon argumentoval, že čas je neměnná veličina. Galileo Galilei se zahloubal do filozofie času a přišel na to, jak přesně vyjádřit čas graficky. Albert Einstein řekl, že čas je jen jiný rozměr. Přidal tak čtvrtý rozměr ke třem známým, v jejichž rámci se pohybujeme v každodenním životě: nahoru - dolů, ze strany na stranu, dopředu - dozadu. Prohlásil, že paradoxně čím rychleji se pohybujeme, tím pomaleji se čas odvíjí. Do krajnosti dovedený výklad této teorie znamená, že minulost, přítomnost a budoucnost jsou pouhým výplodem naší představivosti. Toto zdání vytvořily naše mozky proto, aby to nevypadalo, že se všechno děje najednou. Einsteinovo pojetí jednotného času ale funguje lépe na papíře než ve skutečnosti.

Jak došlo k vývoji lidského jazyka?

Zvířata vydávají zvuky, mnohé z těch zvuků přenášejí informace. Lidská řeč ovšem zůstává nepřekonaná díky své složitosti, rozvinuté jazykové skladbě a gramatice a také pro svou schopnost artikulovat abstraktní pojmy. Podle názoru experimentálního psychologa Stevena Pinkera je nám řeč dána geneticky. Lidský jazyk se prý vyvinul před dvěma sty tisíci let, kdy nám rané lidské bytosti, které zdatně komunikovaly, pravděpodobně předaly své geny. (Ve skutečnosti dokázaly asi lépe křičet hrůzou, když je požíral šavlozubý tygr, než aby si byly schopny efektivně sdělit plán útěku.) Dalším důkazem je to, že lidé s určitou genetickou poruchou mají specifické těžkosti s řečí a gramatikou. Jiní vědci ovšem argumentují, že mluvené slovo je ve skutečnosti výsledkem plánování, paměti a logiky. Podle nich neexistuje nic jako "jazykový gen". Jazyk je kulturním výdobytkem jako písmo. Například Luc Steels postavil roboty s několika znaky obecné inteligence, do jejich softwaru ovšem nepřidal jazykový modul. Roboti si pak sami vyvinuli jazykovou skladbu a gramatiku připomínající lidský jazyk.

Jak oplodněné vajíčko ví, že se z něho má vyvinout člověk?

Představte si, že na prázdné pole umístíte maličkou černou krychli. Ta najednou začne vytvářet kopie sebe samé - jednu, dvě, osm, šestnáct. Množící se krychle vytvářejí struktury - ohrazení, klenby, trubky. Některé trubky se změní v dráty, PVC roury, konstrukční ocel, dřevěné čepy. Ze shluků krychlí se stanou stěnové desky a dřevěné obložení, koberec, skleněné okenní tabulky. Dráty se začnou spojovat do nesmírně složité sítě. A nakonec na poli stojí mrakodrap o sto podlažích. Toto je ve zkratce proces, kterým si projde oplodněná buňka od okamžiku početí. Jak tahle krychle věděla, jak vytvořit mrakodrap? Jak ví buňka, jak stvořit člověka (nebo jakéhokoli jiného savce)? Dříve se biologové domnívali, že buněčné proteiny přenášejí informace. Nyní se proteiny zdají být spíše jednotlivými cihlami a kameny - tedy k ničemu bez stavebního plánu a zedníka. Informace, jak stvořit organismus, musí být vepsána do DNA buňky, nikdo ale ještě nepřišel na to, jak ji číst.

Co se skrývá v zemské kůře?

Víme, že zhruba 6400 kilometrů pod povrchem naší planety se nachází železná koule velikosti Měsíce. Víme také, že stojíme asi na 2900 kilometrech horniny, která tvoří zemskou kůru a plášť. Co je ale mezi pláštěm a železnou koulí? Je to vířící oceán záhadné kapaliny. Vědci si nejsou jisti jejím složením ani tím, jak reaguje s materiálem, který ji obklopuje. Jistě víme pouze to, že v oceánu je mnoho železa. Z čeho se ale ještě skládá? Někteří vědci věří, že zemské jádro obsahuje také mnoho vodíku a síry. Jiní tvrdí, že další důležitou součástí je kyslík, jenž pochází z horniny v té části pláště, která ohraničuje tekuté jádro. Větší znalost žhavé směsi by přinesla mnoho důležitých poznatků o tom, jak se Země formovala a jak vysoká teplota a konvekce působí na tektoniku planety. Více informací by pomohlo vyřešit také další problém: zdali vnitřní jádro roste. Pokud by tomu tak bylo, mohlo by nakonec pohltit roztavený kov, který ho obklopuje, a odstranit tak magnetické pole Země.

Jak může pozorování ovlivnit výsledek?

Když vědci provádí pokus, vyhodnocují výsledek procesu, do kterého nesmí zasahovat - jejich pozorování musí být objektivní. To je ve skutečnosti mnohem složitější. V roce 1927 zformuloval Heisenberg základní princip kvantové mechaniky, podle kterého je nemožné přesně změřit polohu částice a její hybnost zároveň. Podle tohoto principu je přesnost měření v mikrosvětě omezena. Ve světě klasické mechaniky je možné určit polohu a hybnost (rychlost x hmotnost) v každém časovém okamžiku současně. Podle principu neurčitosti je v mikrosvětě nemožné přesně zjistit polohu a hybnost elektronu. Je to dáno vlastnostmi přírody. Pokud budete chtít určit hybnost, ztratíte veškerou informaci o poloze, a naopak. Princip reflektuje dualitu vlna - částice. Zatímco poloha je částicová vlastnost, vlna se spojitě rozprostírá v prostoru. Pokud tedy měříte polohu elektronu, bude se chovat jako částice. Nemůžete tak už změřit jeho vlnové vlastnosti, co je právě hybnost. Polohu určíte například tím způsobem, že vyšlete foton, aby se srazil s elektronem. Při srážce se ale elektron rozprskne, jako když rozstřelíte koule při biliáru. Heisenbergův princip neurčitosti praví, že čím více toho víme o jedné veličině, tím méně toho můžeme zjistit o druhé. Fyzici nemají žádný problém s nesouladem vlnově-částicové duality. Tato dvoukolejnost vyvolává další otázku: pokud nějakou událost nebo věc nepozorujeme, ani se nestala. To, co se může stát v budoucnosti, je množstvím pravděpodobnostních funkcí, které čekají na to, až je někdo zaznamená. Možná zde ani tento článek nebyl, dokud jste nenalistovali tuto stránku.

Kde jsou mé klíče?

Většina mozků dokáže pracovat s pěti až devíti krátkodobými vzpomínkami najednou. Novější informace - telefonní hovor! zmrzlina! - mohou vykopnout předchozí vzpomínku pryč z paměti dříve, než se zařadí do dlouhodobé paměti. A co je ještě horší, nové vzpomínky mají tendenci splývat s těmi stálými. Zaneřáďují tak paměť našich rituálních činností. Vědci říkají, že je velmi snadné zaměnit jednu rutinní činnost za jinou. Takže své klíče hledejte tam, kam si normálně dáváte peněženku. Když to nepomůže, podívejte se do auta, zkontrolujte polštáře na pohovce, zámek ve dveřích a vaši kapsu. S největší pravděpodobností na ně právě nyní koukáte.

Jak mohou komunikovat malé částice?

Jednou z bláznivých představ ve světě velice bláznivé kvantové mechaniky je ta, že dvojice vnitroatomárních částic se může občas vzájemně proplést. To znamená, že jedna neustále ovlivňuje druhou bez ohledu na to, jak jsou vzdálené. Jedná se o tak bizarní jev, že okolo roku 1930 Einstein označil tuto ideu jako "strašidelnou činnost na dálku". V roce 1997 vědci provedli pokus. Oddělili dvojici propletených fotonů a vystřelili je skrze kabely z optických vláken do dvou míst vzdálených asi deset kilometrů. Jeden foton polarizovali do určitého kvantového stavu, druhý foton zaujal opačnou pozici za méně než pět triliontin vteřiny - to je téměř sedmkrát rychleji, než by mezi oběma fotony mohlo cestovat světlo. Samozřejmě, podle teorie relativity nic necestuje rychleji než světlo, ani informace mezi dvěma částicemi. Dokonce i ty nejlepší teorie, které se pokoušejí vysvětlit problém propletených částic, se zdají být pošetilé. Jedna z nich například navrhuje, že signály se vrací zpět časem.

Jak působí placebo?

Tor Wager si vydělává na živobytí tím, že způsobuje lidem bolest. Pracuje jako psycholog na Kolumbijské univerzitě. Dává lidem elektrošoky, aby mohl studovat placebo efekt. Tento efekt je jednou z největších záhad moderní medicíny. Wager se skupinou svých kolegů pouštěl v průběhu jednoho experimentu velké dávky elektrické energie do zápěstí čtyřiadvaceti pokusných subjektů. Potom výzkumníci potřeli zápěstí subjektů neutrálním krémem, řekli jim ovšem, že působí proti bolesti. Když je potom vystavili elektrickým šokům, osm subjektů prohlásilo, že je to bolelo mnohem méně. Nápad, že by neškodný roztok mohl redukovat bolest, se zdá být pozoruhodný. Nyní mohou mít placebo náhrady stejný efekt jako moderní medicína. Studie ukazují, jak třicet až čtyřicet procent pacientů hlásí zlepšení poté, co užívají neúčinné pilulky. Zlepšení se týká pacientů s celou šíří diagnóz od deprese přes vysoký krevní tlak až po Parkinsonovu chorobu.
Dokonce i falešná operace může dělat zázraky. Během současné studie lékaři provedli artroskopickou operaci kolene u skupiny pacientů, kteří trpěli artritidou. Během těchto operací jim vyčistili a vypláchli kolenní klouby. Pacientům z jiné skupiny udělali na koleni malé řezy, které vypadaly jako pooperační jizvy, poté jim kolena jen obvázali. Pacienti z obou skupin shodně hlásili úlevu od bolesti. "Pokud vím, placebo efekt ještě nikdy nikoho nevzkřísil z mrtvých," říká profesor Howard Brody, "placebo efekt má ale do určité míry pozitivní vliv na naprostou většinu diagnóz." Jak je možné, že má placebo efekt takový účinek? Nikdo neví. Vědecké studie nám ale přece jenom něco odhalily. Když dostáváme bolest utišující placebo, naše mozky dokáží uvolnit chemikálie, která mají podobný účinek jako morfium. Tomuto psychologickému mechanismu však vědci začali rozumět teprve nedávno.
Během svého zásadního experimentu s elektrickými šoky Wager použil MRI, aby mohl sledovat mozkovou aktivitu pokusných subjektů. Když člověk věděl, že se blíží bolestivý stimul, mozek se zaktivoval v oblasti, která je využívána pro vysokoúrovňové myšlení. Když výzkumníci aplikovali placebo krém, šedá kůra mozková se zaktivovala v té samé oblasti ještě intenzivněji. To naznačuje, že pokusný subjekt předpokládal úlevu od bolesti. Když přišel elektrický šok, pacienti vykazovali sníženou aktivitu v té části šedé kůry mozkové, kde je mnoho neuronů citlivých na bolest. Tento druh výzkumu může jednoho dne vést k novému způsobu léčby. Mysl bude pomáhat tělu. Do té doby se budou názory lékařů rozcházet. Někteří se domnívají, že je neetické, aby lékař prováděl falešné zákroky nebo podával pacientům léky bez účinných látek. Přece jen ti nejlepší lékaři dosud využívali pouze jednu formu placeba: studie ukázaly, že péče autoritativního, a přesto starostlivého lékaře může mít na pacienta vysoce léčivý účinek. Příležitostné podávání cukrovinek namísto různých medikamentů ale možná není zas až tak úplně špatný nápad.

Je možné cestování v čase?

Odpověď zní ano. Je jen důležité vědět, co si musíte vzít s sebou, když cestujete do minulosti: hůl na obranu před jeskynním mužem a vědecký časopis, abyste jím mohli ohromovat lidi. A fotografie vašich předků, abyste je včas poznali a náhodou je nezastřelili. Když cestujete do budoucnosti, bude se vám hodit sprej proti příšerám, paruka z peří a na tělo přiléhající kostým (v krémové barvě a se zlatým proužkem - je sice drahý, na druhou stranu v něm budete vypadat, jako že pocházíte z vyšší kasty, což má tu výhodu, že vás hned tak někdo nebude chtít zabít nebo sníst).

Co se stane v černé díře s informacemi?

Uvnitř černé díry je gravitace tak intenzivní, že z ní neunikne ani hmota, ani energie. V roce 1975 Stephen Hawking řekl, že něco uniknout přece jen dokáže: nahodilé částice nyní známé jako "Hawkingovo záření".Takže když černé díry pohlcují organizovanou hmotu, co se stane s informací? Prý zůstane uzavřena uvnitř, a když se černá díra vypaří, zničí i ji. To je ovšem paradoxní, protože fyzikální zákony říkají, že informace, stejně jako hmota nebo energie, nemůže být zničena. Hawking si přesto věřil a o své víře dokázal přesvědčit i svého superinteligentního kolegu Kipa Thorna. Avšak Thornův kolega John Preskill zůstával dále skeptický. Tak uzavřeli sázku - o co, to je ve hvězdách. V roce 2004 Hawking ovšem najednou přehodnotil své názory a začal hlásat, že věci, které padají do singularity, nejsou navždy ztraceny. Jejich informace unikne. Přesto dodnes nikdo - snad kromě Hawkinga samého - neumí vysvětlit jak nebo proč. Zřejmě v rámci sázky Hawking obdaroval Preskilla encyklopedií baseballu. Preskill dar váhavě přijal se slovy: "Dokonce i když jsi Stephen Hawking, je možné, že jsi se spletl dvakrát."

Proč zamilovaní "blázní"?

Na vině jsou neurochemikálie, které sytí odměňovací systém v mozku. Spouštěčem může být pohled (nebo vůně) vaší vytoužené a mozek vyloučí látku zvanou dopamin - vaše sexuální touha vzroste. Hladina serotoninu klesne, což způsobí onen pocit "bez tebe nemohu žít". Do toho se přidají spřízněné chemikálie jako oxytocin a vazopresin. No a takovému náporu prostě nemůže nikdo oddolat.

Isaacu, netušíš náhodou, proč ti spadlo jablko na hlavu?

Isaac Newton prvně definoval základní vlastnosti gravitace na konci sedmnáctého století. Tím, že rozřešil tajemství pohybu planety a tahu Země na své obyvatele, položil základy moderní fyziky. To je ale o více než tři sta let později asi tak všechno, co máme: porozumění efektu bez téměř jakékoli znalosti příčiny. Mnoho vědců se domnívá, že gravitaci musí vytvářet nehmotné částice. Pokusy, pomocí kterých by bylo možné prokázat tuto entitu, ovšem nelze provádět za použití současných technologií. Takže zase skončíme asi jenom u jablek.

Proč nerozumíme turbulenci?

Turbulence může zabíjet: náhlá ztráta zdvihu letadla, vzplanutí kapalného paliva uvnitř raketového motoru, sraženiny krve v umělé srdeční chlopni. Když se kapalina nebo plyn pohybují plynule, je to snadné. Změňte ale některé podmínky - rychlost, viskozitu, okolní prostor - a uspořádaný proud se promění ve vířící chaos. Pokud bychom uměli počítačově modelovat fyzikální turbulenci, mohli bychom výsledek těchto modelů použít za účelem sestrojení bezpečnějších a energeticky účinnějších strojů. Problémem je přílišná složitost. Když se proud vody nebo vzduchu změní v turbulenci, skupiny molekul tvoří víry celé škály velikostí. Víry se pak vzájemně ovlivňují zdánlivě nahodilým způsobem. Abychom mohli přesně určit výsledek, museli bychom měřit výchozí podmínky s neproveditelnou přesností. Když nemůžeme předvídat, jak se daný turbulentní systém bude chovat, můžeme ho alespoň zjednodušit. Klíčem je přechodová oblast: přesné místo, kde se plynulý tok hroutí. Turbulenci si tím sice nemůžeme podrobit, inženýrům ale pomáhá přiblížit se k rozumné jistotě toho, že vaše letadlo dosedne na zem v pravý okamžik... a vcelku.

Jaký je smysl nekódované DNA?

Běžná lidská buňka obsahuje až dva metry vláknité makromolekuly
 

Buď první, kdo ohodnotí tento článek.

Anketa

Byl jsi tu?:-)

!!!! KLIK !!!!

Nový komentář

Přihlásit se
  Ještě nemáte vlastní web? Můžete si jej zdarma založit na Blog.cz.
 

Aktuální články

Reklama